THE CHINESE UNIVERSITY OF HONG KONG Department of Mathematics MATH2060B Mathematical Analysis II (Spring 2017) HW5 Solution

Yan Lung Li

1. (P.215 Q11)

We first show that $f \in R[a, b]$: Since f is bounded, by Prop. 1.8 of the Lecture note, it suffices to show that for all $\epsilon > 0$, there exists a partition $P := a = x_0 < x_1 < ... < x_n = b$ on [a, b], we have

$$U(f,P) - L(f,P) < \epsilon$$

Let $\epsilon > 0$ be given, choose $c = a + \delta$, where $0 < \delta < \min\{\frac{\epsilon}{4M + 1}, b - a\}$

Then $c \in (a, b)$, and hence by the integrability of f on [c, b], there exists a partition $P' := c = x_0 < x_1 < \ldots < x_n = b$ on [c, b] such that

$$U(f, P') - L(f, P') < \frac{\epsilon}{2}$$

Define a partition P on [a, b] by $P := a < c < x_1 < ... < x_n = b$. Then

$$\begin{array}{lcl} U(f,P) - L(f,P) &=& (\sup_{[a,c]} f - \inf_{[a,c]} f)(c-a) + U(f,P') - L(f,P') \\ &<& 2M \cdot \frac{\epsilon}{4M+1} + \frac{\epsilon}{2} \\ &<& \epsilon \end{array}$$

Since $\epsilon > 0$ is arbitrary, $f \in R[a, b]$.

Then we claim that $\int_{c}^{b} f \to \int_{a}^{b} f$ as $c \to a^{-}$: Given $\epsilon > 0$, choose $\delta = \min\{\frac{\epsilon}{M+1}, b-a\}$. Then for all $a < c < a + \delta$, since $f \in R[a, b]$ and $f|_{[c, b]} \in R[c, b]$, by Prop. 1.13 of the note,

$$|\int_{c}^{b} f - \int_{a}^{b} f| = |\int_{a}^{c} f|$$

By Prop. 1.12 (ii), $|\int_a^c f| \leq \int_a^c |f| \leq M(c-a) < M \cdot \frac{\epsilon}{M+1} < \epsilon$ Therefore, for all $a < c < a + \delta$, $|\int_c^b f - \int_a^b f| < \epsilon$. This shows $\int_c^b f \to \int_a^b f$ as $c \to a^-$.

2. (P.215 Q15)

Note that an analogous argument as in Q11 implies that for any bounded function $f : [a, b] \to \mathbb{R}$ such that for any a < c < b, $f|_{[a,c]} \in R[a,c]$, then $f \in R[a,b]$.

More generally, the argument will actually imply that for any bounded function $f:[a,b] \to \mathbb{R}$ such that

for any a < c < d < b, $f|_{[c,d]} \in R[c,d]$, then $f \in R[a,b]$.

Now let $E = \{y_1, ..., y_N\} \subseteq [a, b]$ be the given finite set such that $y_1 < y_2 < ... < y_N$. We first assume for simplicity that $y_1 \neq a$ and $y_N \neq b$. Denote $y_0 = a$ and $y_{N+1} = b$ for notational convenience.

By Prop. 1.13, and induction on N, it suffices to show that $f_0 = f|_{[y_0,y_1]}, f_1 = f|_{[y_1,y_2],...,f_{N-1}} = f|_{[y_{N-1},y_N]}, f_N = f|_{[y_N,y_{N+1}]}$ are integrable on their corresponding domains:

For each $0 \leq k \leq N$, for all $c, d \in \mathbb{R}$ such that $y_k < c < d < y_{k+1}$, since f is continuous on $[a,b] \setminus E$, $f_k|_{[c,d]}$ is continuous and hence $f_k|_{[c,d]} \in R[c,d]$. By the second assertion in the above, $f_k \in R[y_k, y_{k+1}]$.

Therefore, for each $0 \le k \le N, f_k \in R[y_k, y_{k+1}]$, and hence $f \in R[a, b]$.

If $y_1 = a$ (resp. $y_N = b$), simply disregard f_0 (resp. f_N) and the above argument still applies.

3. (P.215 Q16)

Define
$$F(x) = \begin{cases} 0 & \text{if } x = a \\ \int_a^x f & \text{if } a < x \le b \end{cases}$$

Then by Theorem 2.1 (ii) of the lecture note, since f is continuous on [a, b], F is continuous on [a, b], differentiable on (a, b) with F' = f on (a, b). Therefore, by Mean Value Theorem (Theorem 6.2.4 of the textbook), there exists $c \in (a, b)$ such that

$$F(b) - F(a) = F'(c)(b - a)$$

which is exactly the following equality:

$$\int_{a}^{b} f - 0 = f(c)(b - a)$$

Therefore, there exists $c \in (a, b)$ such that $\int_a^b f = f(c)(b - a)$.

4. Define
$$F(x) = \begin{cases} 0 & \text{if } x = a \\ \int_a^x fg & \text{if } a < x \le b \end{cases}$$
 and $G(x) = \begin{cases} 0 & \text{if } x = a \\ \int_a^x g & \text{if } a < x \le b \end{cases}$

Again, by Theorem 2.1, F, G are continuous on [a, b], differentiable on (a, b) with F' = fg; G' = g on (a, b). Since g(x) > 0 for all $x \in [a, b]$, $G'(x) \neq 0$ for all $x \in (a, b)$. Therefore, by Cauchy Mean Value Theorem (Theorem 6.3.2 of the textbook), there exists $c \in (a, b)$ such that

$$\frac{F(b) - F(a)}{G(b) - G(a)} = \frac{F'(c)}{G'(c)}$$

which is exactly the following equality:

$$\frac{\int_{a}^{b} fg - 0}{\int_{a}^{b} g - 0} = \frac{(fg)(c)}{g(c)} = f(c)$$

Therefore, there exists $c \in (a, b)$ such that

$$\int_{a}^{b} fg = f(c) \int_{a}^{b} g$$

This conclusion fails without the assumption that g(x) > 0 for all $x \in [a, b]$. For example, let a = -1; b = 1; f(x) = g(x) = x. Then $\int_{-1}^{1} g(x) dx = 0$, and hence for all $c \in [-1, 1]$, $f(c) \int_{-1}^{1} g(x) dx = 0$. Meanwhile, $\int_{-1}^{1} (fg)(x) dx = 2 \int_{0}^{1} x^{2} dx = \frac{2}{3} \neq 0$. Therefore, the conclusion fails.