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1. (P.215 Q11)

We first show that f ∈ R[a, b]: Since f is bounded, by Prop. 1.8 of the Lecture note, it suffices to show
that for all ε > 0, there exists a partition P := a = x0 < x1 < ... < xn = b on [a, b], we have

U(f, P )− L(f, P ) < ε

Let ε > 0 be given, choose c = a+ δ, where 0 < δ < min{ ε

4M + 1
, b− a}

Then c ∈ (a, b), and hence by the integrability of f on [c, b], there exists a partition P ′ := c = x0 <
x1 < ... < xn = b on [c, b] such that

U(f, P ′)− L(f, P ′) < ε

2

Define a partition P on [a, b] by P := a < c < x1 < ... < xn = b. Then

U(f, P )− L(f, P ) = (sup
[a,c]

f − inf
[a,c]

f)(c− a) + U(f, P ′)− L(f, P ′)

< 2M · ε

4M + 1
+
ε

2
< ε

Since ε > 0 is arbitrary, f ∈ R[a, b].

Then we claim that
´ b
c
f →

´ b
a
f as c → a− : Given ε > 0, choose δ = min{ ε

M + 1
, b − a}. Then for

all a < c < a+ δ, since f ∈ R[a, b] and f |[c,b] ∈ R[c, b], by Prop. 1.13 of the note,

|
ˆ b

c

f −
ˆ b

a

f | = |
ˆ c

a

f |

By Prop. 1.12 (ii), |
´ c
a
f | ≤

´ c
a
|f | ≤M(c− a) < M · ε

M + 1
< ε

Therefore, for all a < c < a+ δ, |
´ b
c
f −
´ b
a
f | < ε. This shows

´ b
c
f →

´ b
a
f as c→ a− .

2. (P.215 Q15)

Note that an analogous argument as in Q11 implies that for any bounded function f : [a, b] → R such
that for any a < c < b , f |[a,c] ∈ R[a, c], then f ∈ R[a, b].

More generally, the argument will actually imply that for any bounded function f : [a, b] → R such that

1



for any a < c < d < b , f |[c,d] ∈ R[c, d], then f ∈ R[a, b].

Now let E = {y1, ..., yN} ⊆ [a, b] be the given finite set such that y1 < y2 < ... < yN . We first assume
for simplicity that y1 6= a and yN 6= b. Denote y0 = a and yN+1 = b for notational convenience.

By Prop. 1.13, and induction onN , it suffices to show that f0 = f |[y0,y1], f1 = f |[y1,y2],...,fN−1 = f |[yN−1,yN ],fN =
f |[yN ,yN+1] are integrable on their corresponding domains:

For each 0 ≤ k ≤ N , for all c, d ∈ R such that yk < c < d < yk+1, sincef is continuous on [a, b]\E,
fk|[c,d] is continuous and hence fk|[c,d] ∈ R[c, d]. By the second assertion in the above, fk ∈ R[yk, yk+1].

Therefore, for each 0 ≤ k ≤ N ,fk ∈ R[yk, yk+1], and hence f ∈ R[a, b].

If y1 = a (resp. yN = b), simply disregard f0 (resp. fN ) and the above argument still applies.

3. (P.215 Q16)

Define F (x) =

{
0 if x = a´ x
a
f if a < x ≤ b

Then by Theorem 2.1 (ii) of the lecture note, since f is continuous on [a, b], F is continuous on [a, b], differ-
entiable on (a, b) with F ′ = f on (a, b). Therefore, by Mean Value Theorem (Theorem 6.2.4 of the textbook),
there exists c ∈ (a, b) such that

F (b)− F (a) = F ′(c)(b− a)
which is exactly the following equality:

ˆ b

a

f − 0 = f(c)(b− a)

Therefore, there exists c ∈ (a, b) such that
´ b
a
f = f(c)(b− a).

4. Define F (x) =

{
0 if x = a´ x
a
fg if a < x ≤ b

and G(x) =

{
0 if x = a´ x
a
g if a < x ≤ b

.

Again, by Theorem 2.1, F,G are continuous on [a, b], differentiable on (a, b) with F ′ = fg ; G′ = g on
(a, b). Since g(x) > 0 for all x ∈ [a, b], G′(x) 6= 0 for all x ∈ (a, b). Therefore, by Cauchy Mean Value Theorem
(Theorem 6.3.2 of the textbook), there exists c ∈ (a, b) such that

F (b)− F (a)
G(b)−G(a)

=
F ′(c)

G′(c)

which is exactly the following equality:
´ b
a
fg − 0´ b

a
g − 0

=
(fg)(c)

g(c)
= f(c)

Therefore, there exists c ∈ (a, b) such that
ˆ b

a

fg = f(c)

ˆ b

a

g

This conclusion fails without the assumption that g(x) > 0 for all x ∈ [a, b]. For example, let a = −1 ;
b = 1 ; f(x) = g(x) = x. Then

´ 1
−1 g(x)dx = 0, and hence for all c ∈ [−1, 1], f(c)

´ 1
−1 g = 0. Meanwhile,´ 1

−1(fg)(x)dx = 2
´ 1
0
x2dx =

2

3
6= 0 . Therefore, the conclusion fails.
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