THE CHINESE UNIVERSITY OF HONG KONG Department of Mathematics MATH2060B Mathematical Analysis II (Spring 2017) HW5 Solution

Yan Lung Li

1. (P. 215 Q11)

We first show that $f \in R[a, b]$: Since f is bounded, by Prop. 1.8 of the Lecture note, it suffices to show that for all $\epsilon>0$, there exists a partition $P:=a=x_{0}<x_{1}<\ldots<x_{n}=b$ on $[a, b]$, we have

$$
U(f, P)-L(f, P)<\epsilon
$$

Let $\epsilon>0$ be given, choose $c=a+\delta$, where $0<\delta<\min \left\{\frac{\epsilon}{4 M+1}, b-a\right\}$
Then $c \in(a, b)$, and hence by the integrability of f on $[c, b]$, there exists a partition $P^{\prime}:=c=x_{0}<$ $x_{1}<\ldots<x_{n}=b$ on $[c, b]$ such that

$$
U\left(f, P^{\prime}\right)-L\left(f, P^{\prime}\right)<\frac{\epsilon}{2}
$$

Define a partition P on $[a, b]$ by $P:=a<c<x_{1}<\ldots<x_{n}=b$. Then

$$
\begin{aligned}
U(f, P)-L(f, P) & =\left(\sup _{[a, c]} f-\inf _{[a, c]} f\right)(c-a)+U\left(f, P^{\prime}\right)-L\left(f, P^{\prime}\right) \\
& <2 M \cdot \frac{\epsilon}{4 M+1}+\frac{\epsilon}{2} \\
& <\epsilon
\end{aligned}
$$

Since $\epsilon>0$ is arbitrary, $f \in R[a, b]$.
Then we claim that $\int_{c}^{b} f \rightarrow \int_{a}^{b} f$ as $c \rightarrow a^{-}$: Given $\epsilon>0$, choose $\delta=\min \left\{\frac{\epsilon}{M+1}, b-a\right\}$. Then for all $a<c<a+\delta$, since $f \in R[a, b]$ and $\left.f\right|_{[c, b]} \in R[c, b]$, by Prop. 1.13 of the note,

$$
\left|\int_{c}^{b} f-\int_{a}^{b} f\right|=\left|\int_{a}^{c} f\right|
$$

By Prop. 1.12 (ii), $\left|\int_{a}^{c} f\right| \leq \int_{a}^{c}|f| \leq M(c-a)<M \cdot \frac{\epsilon}{M+1}<\epsilon$
Therefore, for all $a<c<a+\delta,\left|\int_{c}^{b} f-\int_{a}^{b} f\right|<\epsilon$. This shows $\int_{c}^{b} f \rightarrow \int_{a}^{b} f$ as $c \rightarrow a^{-}$.
2. (P. 215 Q15)

Note that an analogous argument as in Q11 implies that for any bounded function $f:[a, b] \rightarrow \mathbb{R}$ such that for any $a<c<b,\left.f\right|_{[a, c]} \in R[a, c]$, then $f \in R[a, b]$.

More generally, the argument will actually imply that for any bounded function $f:[a, b] \rightarrow \mathbb{R}$ such that
for any $a<c<d<b,\left.f\right|_{[c, d]} \in R[c, d]$, then $f \in R[a, b]$.
Now let $E=\left\{y_{1}, \ldots, y_{N}\right\} \subseteq[a, b]$ be the given finite set such that $y_{1}<y_{2}<\ldots<y_{N}$. We first assume for simplicity that $y_{1} \neq a$ and $y_{N} \neq b$. Denote $y_{0}=a$ and $y_{N+1}=b$ for notational convenience.

By Prop. 1.13, and induction on N, it suffices to show that $f_{0}=\left.f\right|_{\left[y_{0}, y_{1}\right]}, f_{1}=\left.f\right|_{\left[y_{1}, y_{2}\right], \ldots, f_{N-1}=\left.f\right|_{\left[y_{N-1}, y_{N}\right]}, f_{N}=}$ $\left.f\right|_{\left[y_{N}, y_{N+1}\right]}$ are integrable on their corresponding domains:
For each $0 \leq k \leq N$, for all $c, d \in \mathbb{R}$ such that $y_{k}<c<d<y_{k+1}$, since f is continuous on $[a, b] \backslash E$, $\left.f_{k}\right|_{[c, d]}$ is continuous and hence $\left.f_{k}\right|_{[c, d]} \in R[c, d]$. By the second assertion in the above, $f_{k} \in R\left[y_{k}, y_{k+1}\right]$.

Therefore, for each $0 \leq k \leq N, f_{k} \in R\left[y_{k}, y_{k+1}\right]$, and hence $f \in R[a, b]$.
If $y_{1}=a\left(\right.$ resp. $\left.y_{N}=b\right)$, simply disregard f_{0} (resp. f_{N}) and the above argument still applies.
3. (P. 215 Q16)

Define $F(x)= \begin{cases}0 & \text { if } x=a \\ \int_{a}^{x} f & \text { if } a<x \leq b\end{cases}$
Then by Theorem 2.1 (ii) of the lecture note, since f is continuous on $[a, b], F$ is continuous on $[a, b]$, differentiable on (a, b) with $F^{\prime}=f$ on (a, b). Therefore, by Mean Value Theorem (Theorem 6.2.4 of the textbook), there exists $c \in(a, b)$ such that

$$
F(b)-F(a)=F^{\prime}(c)(b-a)
$$

which is exactly the following equality:

$$
\int_{a}^{b} f-0=f(c)(b-a)
$$

Therefore, there exists $c \in(a, b)$ such that $\int_{a}^{b} f=f(c)(b-a)$.
4. Define $F(x)=\left\{\begin{array}{ll}0 & \text { if } x=a \\ \int_{a}^{x} f g & \text { if } a<x \leq b\end{array}\right.$ and $G(x)=\left\{\begin{array}{ll}0 & \text { if } x=a \\ \int_{a}^{x} g & \text { if } a<x \leq b\end{array}\right.$.

Again, by Theorem 2.1, F, G are continuous on $[a, b]$, differentiable on (a, b) with $F^{\prime}=f g ; G^{\prime}=g$ on (a, b). Since $g(x)>0$ for all $x \in[a, b], G^{\prime}(x) \neq 0$ for all $x \in(a, b)$. Therefore, by Cauchy Mean Value Theorem (Theorem 6.3.2 of the textbook), there exists $c \in(a, b)$ such that

$$
\frac{F(b)-F(a)}{G(b)-G(a)}=\frac{F^{\prime}(c)}{G^{\prime}(c)}
$$

which is exactly the following equality:

$$
\frac{\int_{a}^{b} f g-0}{\int_{a}^{b} g-0}=\frac{(f g)(c)}{g(c)}=f(c)
$$

Therefore, there exists $c \in(a, b)$ such that

$$
\int_{a}^{b} f g=f(c) \int_{a}^{b} g
$$

This conclusion fails without the assumption that $g(x)>0$ for all $x \in[a, b]$. For example, let $a=-1$; $b=1 ; f(x)=g(x)=x$. Then $\int_{-1}^{1} g(x) d x=0$, and hence for all $c \in[-1,1], f(c) \int_{-1}^{1} g=0$. Meanwhile, $\int_{-1}^{1}(f g)(x) d x=2 \int_{0}^{1} x^{2} d x=\frac{2}{3} \neq 0$. Therefore, the conclusion fails.

